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This paper describes a procedure which optimizes the fitting of a 'model' of a protein to an electron 
density map. The technique seeks to minimize ~ (0o-Om)Zdv where Oo is the observed electron density 
and 0,~ is a density associated with a model in terms of which the observed densities are interpreted. 
0,~ consists of a Gaussian density centred on each atomic centre, and a floating background level. 
Interactions due to overlapping densities of neighbouring atoms are allowed for and the model is 
normally treated as a flexible chain so that bond lengths are conserved during movement. Alternatively, 
the atoms may be.aUowed to move independently. Site occupations and atomic radii are also refinable. 
The calculation is organized in terms of a 'molten zone' of up to ten residues, which moves along the 
chain one residue at a time, linear or non-linear constraints being applied to preserve chain continuity 
at each end of the zone. Provision is made for the zone to become active or inactive in predetermined 
regions of the molecule. A difference map (0o-Ore) is available at the end of the calculation, as is a 
molecular listing with revised coordinates and dihedral and inter-bond angles. Inter-bond angles may 
be treated either as constants or as variables, and if variable may be made elastically stiffer than 
dihedral angles. 

The procedure is well suited to maps of 2 to 3/~ resolution, but is not limited to this range. It has 
produced convergent shifts exceeding 1"5 ~ in a map of 2 A resolution, and, except for shifts exceeding 
1 A, convergence is essentially complete in one pass. The procedure has, so far, been applied to four 
proteins. 
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Notation 

orthogonal matrices 
atomic radius 
compounded radius of two atoms, 

a~j = ~ + a~, a ,  = a t 1/2 

temperature factor, isotropic 
correlation coefficient 
rectangular matrix of derivatives 

OQm rectangular matrix of  ~-)-- values 

~X 
rectangular matrix o f - ~ -  values 

background level 
WDU -1, transformed derivative matrix 
E matrices given by equation 20 
F summed over grid points 
rectangular matrix of eigenvectors defining 
a forbidden subspace 
continuous function of position equal to 

OQm 
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observed structure factor, complex 
calculated structure factor based on 0m 
calculated structure factor based on O~ 
calculated structure factor based on back- 
ground term alone 
effective atomic scattering factor 
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r(F) 

projector matrix, equation (29) 
spherical Gaussian density, radius a, 
equation (1) 
one-dimensional Gaussian density, width a 
scale factor 
normal matrix element, or an integer 
number of grid points 
spindle vector, i.e. a vector joining two points 
in the structure about which part of the struc- 
ture is allowed to rotate relative to the re- 
mainder 
a spindle vector of unit length 
rectangular matrix of eigenvectors defining a 
permitted subspace 
general parameters, also subscripts 1,2, 3 
denoting components of a vector 
residuals [equations (5) and (56)] 
position vector in real space, (A) 
[rl 
r--r/  
]r-r~l 
Cartesian position vector of atom i 
r~ - r I 
Ir,jl 
Cartesian position vector of a grid point 
r ~ -  r i 
Iraqi 
position vector in reciprocal space, (A -1); also 
column vector of wanted translations 
pth component of  s (reciprocal space) 
[s[ (reciprocal space) 
Fourier transform of F 



R. D I A M O N D  437 

U 

V 
v 

do 

W 

x 
x 
xlp 

Xilp 
xTp 

Xylp 
Y 
Z 

z~ 
Z 
~pq 

0 

0 
A 
A 
2t 

P 
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Qo 
Qoy 
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Qm 
Q~ 

column matrix of translations expressible in 
terms of conformational changes 
square matrix such that UU contains para- 
metric weights, usually diagonal 
column matrix of residual translations 
square matrix such that VV contains weights 
associated with translations 
unit-cell volume 
volume associated with each grid point in 
0o map 
element of volume 
square matrix such that VOW are the 
observational weights, usually diagonal 
column matrix of parametric quantities 
Cartesian coordinate, (A) 
pth Cartesian component of r~ 
pth Cartesian component of r u 
pth component of r r 
pth component of rr~ 
column matrix of observational quantities 
filter matrix, square, having 0 or 1 in diagonal 
positions, zero elsewhere 
number of electrons in atom i 
weighted parameters 
Kronecker delta 
column matrix of observational residuals 
column matrix of adjustments to conforma- 
tional angles, also the vector 0fi 
Bragg angle or a conformational angle 
matrix of eigenvalues, diagonal 
lattice of ~-functions at grid points 
eigenvalues 
wavelength 
column matrix of eigenshifts 
column matrix comprising a list of Q values 
Qo - Q,n 
observed electron density 
Qo at a grid point 
model electron density 
that part of Q,n attributable to a single atom 
Q,n omitting the background term 
column matrix of weighted conformational 
changes, U0 
column matrix of reduced conformational 
changes, equation (44) 

1. Introduction 

The purpose of the work described in this paper is to 
provide a reliable procedure for dealing with the 
quantitative aspects of the interpretation of an electron 
density map of a protein. It is in no way concerned 
with the qualitative aspects of interpretation and it is 
assumed at the outset that the preliminary interpreta- 
tion of the map made by the crystallographer is essen- 
tially correct. The procedure does not experiment with 
alternatives, and a peptide link which is initially 
upside down, for example, will not be turned over 
unless this change is associated with a monotonically 

decreasing residual. The procedure normally treats the 
protein as a flexible chain of linked atoms whose 
internal geometry is fixed except for specified flexibili- 
ties, and it normally operates in conditions where 
individual atoms are not resolved. For both these 
reasons it is necessary that the preliminary interpreta- 
tion be satisfactory in its fixed geometry (such as bond 
lengths and the majority of inter-bond angles) and it 
is therefore essential that the trial structure should 
itself consist of the results of a mathematical model- 
building procedure such as those of Diamond (1966) or 
of Levitt & Lifson (1969). For the former it is not 
necessary to provide hand-measured coordinates for 
more than about three atoms per residue in order to 
generate a suitable trial structure for refinement, whilst 
the latter provides a minimum energy conformation. 

In an earlier paper (Diamond, 1965), a study was 
made of the characteristics of flexible chains when 
these are refined against data in reciprocal space, 
whereas the present work uses data in real space. 
There are advantages and disadvantages to both, but 
it now seems clear that the balance of advantage lies 
with the real-space technique. Some of the relevant 
considerations are as follows: 
(i) With the real-space procedure the number of 
derivatives which needs to be evaluated (independent 
atom model) is the product of the number of grid 
point densities affected by one atom and the number 
of atoms, n, which rises linearly on n for a given resolu- 
tion. For the reciprocal-space technique the corre- 
sponding figure is the product of the number of atoms 
and the number of re flexions, which rises as n z for a 
given resolution. This alone would be sufficient reason 
for prefering real space for large molecules. 
(ii) With the reciprocal-space technique it is always 
necessary, when considering each reflexion, to repre- 
sent the whole of the molecule in some way even though 
only a part of it may be being refined. With the real-space 
technique, however, there is never more than the 
equivalent of ten residues of chain and the correspond- 
ing volume of density map present in the computer, 
so that there is no upper limit to the size of the mol- 
ecule that may be refined. A large molecule takes 
longer, but has exactly the same core storage require- 
ments as a small one. Ultimately, the limits are set 
by the length of a magnetic tape or the size of a disc 
storage device used for the electron densities. 
(iii) Electron density maps of proteins commonly show 
signs of ordered material in the solvent interstices. 
Such effects can make close agreement between Fo and 
Fc values difficult to achieve, and in reciprocal-space 
refinement these effects cannot be separated from the 
protein diffraction. Contributions to AF arising from 
this source may perturb the refinement unless one can 
depend on their orthogonality to the derivatives of F 
with respect to the protein parameters, and this implies 
that a full set of data rather than a selection should 
be used. With the real-space technique solvent effects 
are naturally separated and do not affect the closeness 
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of fit which may be achieved between the observed 
and model densities within the protein. 
(iv) The one respect in which the reciprocal-space 
technique appears to have an advantage, (at least in 
the final stages of refinement) is that it is possible there 
to weight the observations in accordance with their 
reliabilities, whereas it is assumed in the present work 
that the observed electron densities at all grid points 
are equally reliable. This is probably not true, especially 
near special positions and heavy atom sites. The 
question of observational weights, and the relation- 
ship of the adopted scheme to reciprocal-space 
weighting schemes is considered further below. 
(v) Finally, the two techniques differ in that reciprocal- 
space techniques may be arranged to refine either 
against IFo[ or against IFol exp {i~c} or lFol exp {io~o}, 
using isomorphous replacement phases in the last case. 
Real-space refinement, on the other hand, implies that 
whatever phases were used in calculating the electron 
density are to be treated as observational quantities. 
This, too, may be counted a disadvantage of the real- 
space technique. However, phases derived from a 
previous cycle may be used to calculate the electron 
densities for the next. 

The present work is a form of zone refinement. At 
any stage of the calculation there are represented in the 
computer a small number, < 10, of consecutive amino 
acid residues. This zone is subdivided into two types 
of region. The greater part of it, normally, is called the 
molten zone. Atoms within the molten are zone general- 
ly free to move or to vary their weight and radius 
parameters. At each end of the zone there are margin 
regions within which the atoms are not permitted to 
move or vary their weight or radius. The margins serve 
two main purposes. One is to ensure that, by keeping 
them still, the chain remains at all times continuous 
with those parts of the chain which are not represented 
in the machine, and the other is concerned with the 
proper calculation of terms relating to atoms near the 
end of the molten zone for which overlap of density 
with neighbouring atoms must be allowed. For these 
atoms the neighbouring atoms may be in the margin. 
The margins may also be used for other special pur- 
poses, for example, it is possible to designate on the 
input listing that certain atom(s) shall at all times be 
treated as margin atoms even when they occur in the 
middle of the molten zone. This facility is particularly 
useful in pinning the far end of a cystine bridge when 
the calculation is following the course of the main 
chain, whilst still permitting most of the bridge to 
move. If this is not done, the far end of the bridge will 
be influenced by density in the map for which no cor- 
responding atoms occur in the molecular listing at 
that point, whilst to include the distant main chain 
atoms in the listing leads to the need to deal with 
networks rather than chains with a single level of 
branching. Such bridges are normally represented 
twice, once in connexion with each portion of main 
chain to which they are attached. Both portions of 

main chain are therefore free to move, but the two 
images of the bridge may fail to coincide exactly. 

After each refinement (or group of refinements) the 
zone moves one residue along the chain, involving the 
output of one residue and the input of another. At the 
start and finish however, when a chain terminus is in 
the zone, a margin is only established at the end of the 
zone which adjoins the rest of the chain. Initially the 
zone is of zero length and several steps are required 
before it builds up to its assigned length, and there is a 
similar run-down stage at the end. 

The structure which is being refined must be presen- 
ted in the form of a list of atoms, main chain parameters 
and side chain parameters specifically ordered accord- 
ing to the rules set out by Diamond (1966) so that 
their order unambiguously indicates where branch 
points occur in the chain and where flexibility is to be 
introduced. All types of flexibility are treated as/f they 
were dihedral angles, so that the introduction of a 
parameter between two atoms implies free rotation of 
the structure above this parameter in the list relative to 
the structure below it, about the line joining the two 
atoms concerned, with appropriate limitation on the 
range of action of side chain parameters. It is always 
the structure above a parameter which is moved by it, 
the structure below being stationary, so that the margin 
at the lower end (called the root end) of the zone can 
never move unless it contains a chain terminator which 
provides translational freedom of the chain terminus. 
On the other hand, every main chain parameter, if al- 
tered, moves the margin at the top of the zone and 
suitable constraint techniques are employed to maintain 
its position. (In this connexion the 'upper' and 'lower' 
ends of the zone relate to their positions on a page of 
printed output. The lower or root end contains struc- 
ture most recently read into the zone and the upper end 
contains structure which is about to be output.) If it is 
required to introduce flexibility of another kind, inter- 
bond angles for example, this may be done by including 
suitably positioned dummy atoms in the listing, and 
inserting parameters between them. These atoms form 
an integral part of the chain and move as the chain 
moves, but they possess no electrons and have no direct 
influence on the refinement. 

In order to economize in core storage requirements 
the electron density map is held on a disc or similar 
device, subdivided into pages containing up to 180 
grid points each. As the molten zone moves along the 
molecule, those pages which are required are brought 
into core storage. Thus, for efficient working, it is only 
necessary for the core storage allocation to be sufficient 
to contain the density values within the molten zone, 
and may even be less. If it is less there is some loss of 
efficiency, and in some circumstances there may be a 
consequential systematic error, discussed below. Fa- 
cilities are also provided which allow the map on the 
backing store device to completely span a whole 
molecule, with some to spare, even though only one 
asymmetric unit of densities need be provided originally 
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and the molecule may run into neighbouring asym- 
metric units. 

2. The choice of model density and minimized residual 

The assumed form of the model electron density is 

4m(r)=g ~ ZiG(ai, r - r i )+d  
i 

where (1) 
G(a, r ) = a  -3 exp {-rcr2/a2}. 

G is a spherical Gaussian function such that its volume 
integral is unity for all a > 0 .  a is thus an effective 
radius for an atom where its density is about one 
twentieth of its central value. Z~ is the number of 
electrons associated with atom i, K is an overall scale 
factor and d is a background level which, in principle, 
is -F(OOO)/V if 4o is on an absolute scale and F(000) is 
omitted, but in practice it varies slowly from place to 
place (see Fig. 1 and § 6). If the effective atomic scat- 
tering factor is written 

f =  Z exp { -  B sin 2 0/22} 
then (2) 

a = I/-B/4=. 

The choice of Gaussian form for the model atoms is 
largely arbitrary, but it would be difficult to argue 
that any particular alternative is necessarily superior. 
The function chosen for 4m has to be capable ofrepresen- 
ring an image of an isolated atom in the prevailing 
conditions which normally involve: 

(i) a low-resolution cut-off, 
(ii) a large experimental temperature factor, 
(iii) a fall-off of the figure of merit with increasing 

sin 0/2. 

Theoretically, therefore, the image of an isolated 
atom is the convolute of the true electron density 
distribution for an atom at rest with three other 
similar functions, and it is to be expected that this 
fourfold convolution will not be distinguishable from 
Gaussian to an extent which is worth characterizing. 
Although isolated atoms are uncommon in proteins 
(bound water molecules being the closest approach) 
one forms the impression from examining electron 
density maps at 2 to 3 A resolution that their profiles 
vary within one map to an extent which makes it not 
worth while to seek a function which describes them 
more accurately and consistently than the Gaussian. 

It is well known that the ratio of the gradient to the 
curvature of the electron density at a particular point 
gives an estimate of the vector distance from that point 
to the centre of the nearest peak of density, supposing 
the density in the peak to be quadratic in form. This 
fact has formed the basis of other methods of refine- 
ment in real space, as reviewed by Lipson & Cochran 
(1966) and by Cruickshank (1959). Such methods have 
been shown by Cochran (1951) to be equivalent to 
least-squares refinement with reciprocal-space data in 

which f-x is used as a weighting factor. Such proce- 
dures therefore give enhanced weight to high-angle 
reflexions which, in the context of protein crystallog- 
raphy, are generally the least-well phased. The real- 
space counterpart to this statement is to note that 
gradient/curvative techniques, at best, fit the maxi- 
mum of the model density to the maximum of the 
observed density and are, therefore, essentially point- 
to-point fittings. As such, they suffer a number of 
disadvantages: 
(i) If a trial structure coordinate is far from the centre 
of an observed peak then writing (tensor notation) 

xi= ~ x )  ~xl ' (3) 

which is valid only for quadratic 4, gives a poor 
approximation to the shift vector x I and may even 
diverge if the initial position lies on the fringe of the 
peak where the curvature of the density has opposite 
sign to that at the centre. If the observed density peak 
is Gaussian rather than quadratic an improvement is 
to write 

1 - 2 z r K 4 x -  \ ~-x-~-~ ~x-jjl ax i (4) 

for density of the form exp {-zr:~Ax} with A positive 
definite, but even then, such a method must fail if the 
initial coordinate lies in the flat region outside the peak. 
(ii) They require the computation of 80/Ox i and 
024/Oxi axj at the initial position, which involves inter- 
polation and differentation in a table of 4o values which 
is usually very coarsely sampled, and the density gradient 
must be obtained accurately. 
(iii) If an observed electron density peak is skew, then 
fitting to its maximum does not necessarily provide 
the best fit over all. 

Because of these considerations the chosen approach 
has been to aim to minimize a residual 

I (4°-- Qm)Zdv (5) R I =  

and it is easy to show that 

1 
R, = ~ ~, IFo-Fel  2 . (6) 

By choosing this approach we see that: 
(i) Equation (5) shows that we accomplish a volume 
fitting rather than point-to-point fitting, which seems 
preferable considering the strange shapes which com- 
monly occur in protein maps. 
(ii) Equation (6) shows that the reciprocal space data 
are uniformly weighted, so that there is no enchanced 
dependence on those high-angle reflexions which are 
poorly phased. 
(iii) No interpolations are required. At no stage are 
the density or its derivatives at the atomic centre given 
any particular attention, all the fitting being done at 
the grid points where the observed electron densities 
are cited. 
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(iv) Because it is a volume fitting, the sums of products 
of derivatives which enter the normal matrices become 
volume integrals of functions of Gaussians, all of 
which are obtainable in closed form. Accordingly the 
normal matrices may be written down outright, rather 
than accummulated arithmetically. 
(v) Allowance for overlap of unresolved atoms be- 
comes a straightforward matter, although Cruick- 
shank (1952) and Truter (1954) have shown that this 
can be done in gradient/curvature methods also. 
(vi) Because it is a volume fitting convergence is to 
be expected provided that some part of the model 
density overlaps some part of the observed density. 
It is not necessary for the initial model coordinate to 
fall within the observed peak at all provided there is 
some overlap. Thus the convergence radius is of the 
order of 2 atomic radii, which is substantially more than 
can be achieved by gradient/curvature methods, and 
this is borne out in practice. 
(vii) It suffers the penalty that it is usually necessary 
to involve the observed electron density at more than 
100 grid points for each atom. 

3. Volume integration 

In order to minimise the residual RI we require the 

normal matrix elements 1 f ~Qm ~6m v ~  ~p - ~ q  dv and the col- 

I I 36m umn v e c t o r -  (6o-6m) dv for parameters p and 
v ~ -  

q. These integrals are analytic if p and q are any two 
of K, d, a t, Z i, x~, Yt, z~, aj, Zj, xj, yj, z I for atoms i 
and j except for those parts involving 6o. For these we 
note the grid sum 

differs from the required integral by an amount which 
depends on the position of the atomic centre in relation 
to the grid points according to 

E(r ,)= ~ F ( r ~ ) =  I F(r°')A(r)dv (8) 
F 

writing Ffor  (36m/~P) 6o and A for a lattice of f functions 
at the grid points r = rr. This is evidently a convolution, 
so that the transform of E(r0 exists only at points 
reciprocal to A. In particular, the origin term in reci- 
procal space is related to the constant part ofE(r~), i.e. 
to the required integral, and the remaining terms to 
its fluctuations. 

Now, the transform of (C36m/Sp) 6o is very similar to 
that of (C36m/3p) Q~,, (unless p is K or d) so that the trans- 
form of the latter may be used to estimate the depen- 
dence of E(rt) on r~. The result may be written 

1186 m 86m 1 [86m 6m ] 
; 

s#0 
×exp {-2zcir t . s}. (9) 

This correction is good unless the definition is coarse 
and overlap is sufficient to make 0o substantially dif- 
ferent from Qm within the region where ~Om/3P is substan- 
tial. This means that, ideally, the definition should be 
related to bond lengths (by a half or a third) rather 
than to the resolution, to sustain the accuracy of the 
correction. 

We shall return to consider the detailed nature of 
these corrections in §§ 6 and 7. For the present we 
remark that if the ratio of an atomic radius, a, to the 
separation of grid points exceeds 2.5 then none of 
these corrections exceed ½%, but they become rapidly 
more severe as definition deteriorates. If the ratio 
mentioned is 2-0, some 7% corrections are involved, 
and at 1.2 the 'correction' may be many times larger 
than the grid sum itself. In practice, the terms in the 
summation in (9) are prearranged in order of increasing 
Isl and the summation is terminated when the exponen- 
tial factor in T(F) falls below 10 -4. The corrections are 
therefore made in low definition maps to the extent 
that they are needed, but time is not wasted on them 
if the definition is high. In any event, these corrections 
are made outside the inner loop which performs the 

operation. 
F 

4. Filtering 

Filtering plays an important part in what follows, 
especially § 8, so we shall review the main points 
before proceeding. For further discussion on this topic 
see, for example, Diamond (1958, 1965, 1966, 1969) 
and Scheringer (1968). 

We begin by writing 

y = D x + e  (10) 

in which the column matrix y contains the observa- 
tional quantities Yobs--Ycalc where ycalc is based on the 
starting values of the parameters, D contains the 
derivatives Oycalc/3x, x contains the parametric shifts 
which are to be calculated and c contains the residuals. 
The quadratic of weighted residuals, g:'~CWe, may then 
be minimized with respect to weighted parameters z = 
Ux by setting 

x = U-I(~E)-I~Wy (11) 
in which 

E = W D U  -1 . (12) 

The transformed normal matrix, ~_,E, then has the 
property that its ith eigenvalue, )-t, is given by 

decrement in g:~CWs due to ith eigenshift (13) 
2~ = increment in ~,~Ux due to ith eigenshift 

in so far as the linear relation (10) holds. This is shown 
in Appendix A. Filtering based on these eigenvalues 
may be accomplished by writing 

x = U -1AZ(A,~EA) -x AEWy (14) 

in which A is orthogonal such that its columns are 
the eigenvectors of ~E and the bracketed matrix is 
diagonal. Z is the filter matrix having ones on the 
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diagonal in positions corresponding to eigenvalues 
above some chosen limit, and zeros elsewhere. The 
eigenshifts referred to in (13) are the elements of the 
column matrix 

p =  Z(.4,~EA)-I.g,I~Wy. (15) 

Since the eigenshifts are uncorrelated, setting any of them 
to zero, as is done by Z, does not affect the required 
values of the remaining ones. Filtering thus provides 
a means of ensuring that large disturbances to the trial 
structure, as measured by ~l]Ux, will not occur if the 
resultant decrement in the residual ~VCWe is judged 
too small to justify the disturbance. 

The choice of matrices U and W is considered below, 
where appropriate. The choice of Z, however, is with 
the user of this procedure who may specify the maxi- 
mum number of eigenshifts to be included by Z, or a 
minimum value of 2t below which eigenshifts are to 
be excluded, or a minimum value of 21/~'max below which 
they are to be excluded. In principle, Hamilton's (1965) 
significance test may be invoked to determine whether or 
not  the reduction in gz~¢CW~; occasioned by reducing the 
number of zeros on the diagonal of Z is significant, 
since each zero on the diagonal of Z ranks as one 
linear constraint on the solution x. In practice, how- 
ever, choosing Z on the basis of (13) in which :~I]Ux 
is designed to represent a strain energy may be prefer- 
red. It is not uncommon for protein density maps to 
be deficient in detail to an extent that the crystallog- 
rapher's interpretation of the map at certain points 
may reflect his judgement of the most probable solu- 
tion, having regard to stereochemical knowledge and 
experience, rather than an unequivocal reading of an 
unambiguous map. In such cases filtering on a basis less 
formal than by Hamilton's criterion permits the crys- 
tallographer to ensure that gross disturbances to his 
interlzretation do not take place in regions where he 
prefers to trust his judgement. 

5. Factorization and the grouping of parameters 

Equation (1) shows that the parameters avaliable for 
refinement are K, d, a~, Z~, and r, and there are also 
the conformational variables, 01, in terms of which 
the r t may be expressed. Now 30m/OP is an even function 
of position with respect to an atomic centre if p is K, 
d, a, or Z t, but is an odd function if p is a positional 
coordinate. Hence the normal matrix elements 

1 I OQ,, OQm dv vanish if either o fp  and q is a posi- 
v ~p Oq 
tional parameter and the other is not. We may therefore 
separate refinement of K, d, a~ and Z~ from the posi- 
tional parameters and refine these separately. This 
operation is described in § 6. 

An interesting situation then arises regarding the 
positional and conformational variables because the 
observational equations may now be factorized. 

The observational equations (10) may now be writ- 
ten 

e---- D1D20 + e (16) 

where the column matrix ~ = ~o-~,,b replaces y (~o = 
observed density, ~mb=model density before refine- 
ment), there being]one,element of ~ for each grid point in 
the molten zone, e= ~o- ~,,~(~ma =model  density after re- 
finement), D1 is rectangular and contains the derivatives 
OQm/OX in which x is a Cartesian coordinate in hngstr6m 
units for each atom, so that the number of columns of 
DI is three times the number of atoms in the molten 
zone, D2 contains the derivatives Ox/30 and the column 
vector 0 contains the increments which are to be com- 
puted and added to the conformational angles. 

In this form the product 

t=D20 (17) 

represents the collection of vector translations which 
will be applied to the atoms (neglecting the curvature 
of their loci) and there is a number of reasons why 
it is advantageous to solve for these translations as an 
intermediary in obtaining 0. The true solution to (16) 
is obtained when W~ is orthogonal to every column 
of WD1D2, i.e. when 

D2D1WW~ = O (18) 

and combination of (16) and (18) leads at once to (11) 
with E now set equal to WD1D2U -1 and 0 and ~ re- 
placing x and y. Computationally this involves evaluat- 
ing the derivative of Q,~ with respect to each 0 at each 
grid point. This is difficult because several atoms in the 
vicinity of each grid point may enter into this relation- 
ship and all of these several atoms would need to be 
considered for each grid point and each parameter 
before moving on to the next unless D~ and D2 are 
evaluated separately and subsequently multiplied 
together. This would involve enormous storage re- 
quirements for D1 especially, and would not take full 
advantage of the fact that the elements of ])ID1 are 
analytic. Secondly, there might well arise circumstanzes 
in which it was desired to refine the coordinates as 
independent variables on a free-atom rather than a 
linked-atom basis. Thirdly, as will be set out in § 8, the 
procedures employed to conserve chain continuity by 
holding the margins still operate by fixing the coordi- 
nates of margin atoms. If the solution for 0 were ob- 
tained using the whole product D1D2 it would only 
be possible to aim at conserving chain continuity by 
ensuring that Qr# does not alter in the margin region, 
and there would inevitably be difficulties in identifying 
which grid points, if any, have their density made up 
solely of contributions from margin atoms. Solution 
by way of wanted translations as intermediary there- 
fore seems essential, and consequently we must consider 
the relationship between the two methods. The first 
method, using the complete product DID2 we call 
method A, and the second, method B. 

Reverting to equation (16) and introducing the 
observational weights W and the weighted parameters 
9 = U0 we have 
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W~ = E1E2~ + We (19) 
where 

E1 =WD1V -1 
(20) 

E2 = VD2U-1 

in which V is a weighting matrix on the translations 
which is analogous to U and whose importance and 
character we now investigate. The best, but computa- 
tionally difficult, solution is then 

0A = U - I ( ~ 2 ~ I E 1 E 2 ) - I ~ 2 ~ I W ~  . (21) 

Alternatively, in method B we solve first for the trans- 
lations s,* which would be required if the atoms were 
not linked, we have 

W~ = WD~s + W~ (22) 
so that 

s-- V-~(E1E~)-li~aWQ. (23) 

This set of wanted translations, s, may differ from any 
set t which may be generated by rotations 0, so we 
write 

s = t + u  ( 2 4 )  

where u is a residual set of translations which may be 
described as wanted but unavailable to a linked-atom 
model. We now solve (24) for 0 by minimizing fi~rVu, 
and obtain 

Vs = E2U0 + Vu 

0B = U- I (~2E2) - IR2Vs  

0B = U - I ( ~ 2 E 2 ) - I ~ 2 ( E I E 1 ) - I E I W 0  

(25) 

(26) 

(27) 

cf. equation (21). 

0A = U -1 ( E 2 ~ I E 1 E 2 ) - I ~ 2 E 1 W e  • 

We now enquire under what circumstances does 
0a = 0B? It is not simply that u must vanish. The two 
methods are equivalent if (18) is satisfied when 08 is 
inserted in (16), i.e. if 

D 2 D I W W  • ~ = D 2 D 1 W W  • DiD2 

• U-~(g2E2)-~i~2(E~E1)-t~W~ 

i.e. if 

I~,T[~2F] 1 -- E 2 ~ l E 1 E 2 ( ~ 2 E 2 ) - l ~ 2 ( ~ I E 1 ) - l ~ l l W ~ :  0 (28) 

i.e. if E~Et commutes with Ea(EaE2)-q~2, for then the 
square bracket vanishes. Two matrices commute only 
if they are square and of the same order, as here, and 
have parallel eigenvectors. We define 

G2= EE(E2E2)-l~2 (29) 

which is a projector matrix having the property that, 
[from (20) and (26)] 

VD20B = VtB = E2(~2E2)-I~2Vs = GaVs (30) 

thus it projects all possible sets of weighted wanted 

* This column vector s has no connexion with the recipro- 
cal-space vector s of equation (9) and others derived therefrom. 

translations, Vs, onto the accessible set of weighted 
translations VtB. All the eigenvalues of G2 are either 
zero or unity, the number of the latter being the number 
of conformational variables, 0, being varied (less the 
number of combinations of 0 excluded by filtering, if 
any). Hence any orthornormal set of eigenvectors of 
G2 divides Vs space into two subspaces corresponding 
to/l = 0 or,/1 = 1 respectively. Within each subspace the 
eigenvectors may be regarded as arbitrary except that 
they must be orthonormal. Thus for 121E1 to commute 
with G2, every eigenvector of ~1E1 must lie wholly in 
one subspace or wholly in the other, i.e. each eigen- 
vector of i~1E1 must either be expressible entirely as V 
times a set of translations which can be generated by 
conformational variation, or it must be orthogonal to 
all such sets. 

In practice it is not possible to ensure that this will 
be the case except by taking the following path. Let us 
define A to be orthogonal such that 

~IS)lWWD1A = A (31) 

where A is diagonal and set 

V = A 1 / 2 A ,  (32) 

A 1/2 also being diagonal. If we insert this value for 
V into the expression for 08 we find that the expression 
for 0A results because R1E1 is then the identity and com- 
mutes with any (;2. 

Operationally, we have already indicated the need 
to solve first for a vector of wanted translations and 
then to transmit this vector to a second procedure for 
conformational refinement, but we now have the 
alternatives of transmitting the vector s or the vector 
Vs as either could form the interface between the two 
procedures. If Vs is chosen, then (23) and (32) yield 

Vs = A-1/2/~l )  l ~ r W ~  (33) 

which (apart from a further factor A -1/2) are the 
eigenshifts for the translational refinement and are 
normally available, together with A and A. The fol- 
lowing conformational refinement would then need to 
be based on equation (26), but since E2 contains V it 
would also be necessary to transmit the matrix V to 
the conformational refinement. Although this approach 
would permit the computation of 0A it is unfortunately 
rather impractical and cumbersome and loses many of 
the advantages of method B. Not only does a large 
volume of data need to be stored and transmitted from 
one procedure to the other, the computation of E2 
would require storage for the whole of E2 and time to 
compute the product VD2, and it would still be neces- 
sary to transform the constraints applicable to s on 
the margin atoms to corresponding constraints ap- 
plicable to Vs. 

If s is transmitted in preference to Vs, major simpli- 
fications are possible at the expense of computing only 
an approximation to 0a. In the first place, substitution 
of (20) in (23) shows that s is independent of V provided 
V is non-singular, so that, in this connexion, V is 
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important only in relation to the filtering of trans- 
lational refinement where it is the quadratic ggCVs 
which is conserved. Secondly, substitution of (20) in 
(26) shows that the conformational refinement involves 
V only through the product ~rV, which is not the case 
if Vs forms the given data, furthermore, since s is p 
independent of V (except for the effect of filtering) it 
is not even essential that the V used in calculating s K 
should be the same as the V used in calculating 0 
from s. 

Adopting (32) gives d 

9V = 131"~7¢WD~ (34) d 

and the approximation we shall adopt is to take only 
the diagonal elements of (34) for ~rV when performing a~ 
the cortformational refinement. This means that we 

a i 
calculate a 0 as close to 0A as may be while maintaining 
all the computational advantages of method B. In a~ 
effect it means that we allow fully for the effects of 
overlap between atoms when calculating the wanted 
translations, but in weighting these translations as data zg 
for the conformational refinement we simplify to a 
diagonal weighting scheme which accounts for the dif- z~ 
fering weights of the atoms but no longer carries an 
allowance for their overlap. Futhermore, since U, V and zt 
W may all now be diagonal, calculation of E2 is no 
more trouble than calculation of D2, and the calculation 
may be arranged so that it is never necessary to hold 
more than one (triple) row of E2 and the product ~2E2. 
It is also the case that with this choice of V the elements 
of ~rv are analytic. 

6. Refinement of scale factor, background, occupations 
and radii 

In this section we outline the refinement of the param- 
eters K, d, ai and Zl of equation (1). K is only refined if 
the Z~ are not refined. 

The background level, d, is of little importance in 
itself but must be treated as a variable otherwise K, a t 
and Z~ values would be in error and such errors must 
cause poor convergence or erratic results in the trans- 
lational and conformational refinements, d values do 
vary considerably from place to place and there is 
evidence (Birktoft, private communication) that d is 
often more deeply negative in the interior of a molecule 
where 0o is strongly modulated than it is near the mo- 
lecular surface. 

On the basis of equation (1) with all grid points 
given equal weight, i.e. W = I ,  there are then nine 
distinct types of normal matrix element of the form 

1 ( O0,n 0Qm dv and these are derived in Appendix 
v ,l 3p 0q 
C and listed in Table 1. 

Within this Table subscripts i and j  refer to atoms and 
include the case i=j. Summations are over all atoms 
in the molten zone, not including the margins. N is the 
total number of grid points within the volume of 
the molten zone; its computation depends on the 

way in which this volume is bounded, as described 
below. 

Table 1. Normal matrix elements 

1 ~ OOm OQm 
dv 

q f f  Op Oq 

1 
K - ~  ~ Z~ZjG(aij, r~j) 

13 i 1 

K 1-Yz, 
13 t 

d N 

KZ ,  a, 7 Z ,  [ r~ - 3 1  K ~ ..... 9_- G(aij, rii) 27r -2f 
v • a i i  aii 

d 0 

K2ZtZlaiai  r U rij 
--4 . . . .  ~f  ai vaail G(ail' rtl) 4~2 - 20n + 15 
a U a# 

K 
d 

13 

al va~ G(ail'rti) a~ 

K2 
Z i ---  G(ail , rt i) 

13 

Elements of the column vector DWW0 calculated 
according to the methods of § 3 are given in Table 2 
and derived in Appendix D. In this table the subscript 
9~ relates to an individual grid point, so that Qro is the 
observed density at that grid point and rr~ is its distance 
from the centre of atom i. i ranges over all atoms in 
the molten zone excluding the margins, but j ranges 
over the whole zone including the margins. This is 
because the j summations serve to subtract from Qo 
the density Qm which is accounted for by the current 
parameter values, so that the vector ~ = 0 o - ~ m  con- 
tains only dznsity which is accountable to adjustments 
within the molten zone. Note that summations over j 
are shown excluding the term i=j. This term does 
occur, but it is treated separately in connexion with 
the Fourier corrections to the grid sums. 

The summations over s are over a half-space ex- 
cluding the origin with (hkl) and (hid) taken together 
in the following thirteen pairs" 3 of the form {100}, 6 
of {110} and 4 of {111}, arranged in order of increasing 
is[, these indices relating to the electron density grid 
as lattice. It is assumed that any Fourier terms in- 
volving higher indices are negligible, and if the defini- 
tion of the map is so low that this is not the case then 
the corrections which are included are already so 
large as to be unreliable and a higher definition map 
should be used. 

In Table 3 we show the results of a sample calcula- 
tion of the corrections to be applied to the term for 
ai on the basis of the assumptions that d=  0, with a 
grid of side l=  ½ A and with the atomic centre located 
exactly on a grid point or at a mesh centre midway 
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Table 2. Elements of  the vector D WW~ 

Z~ 

OOm 1 [ Oe,n ] 
--~p--- 0o~,-- v s ~ T [~p--p 0m exp { - 2 r f f r .  s} 

1 I 00m - v -ff~--p Omdv 

Ooy ~. Zt G(a~, rr~) 
1" I 

K ~" Z~G(a"'O)[ l + 2 ~ exp { -  ~za~s2/2}c°s 2~zrt " , s 

K 
- --  ~ "~. Z~ZjG(a~j,%) 

I) i i 
1¢:.¢ 

s] 
0o~, _ __K ~ Zi_  Nd 

1" /3 

K ~F 00~, a~ -a 2" 

3KZZ~ 
+ -5~a~v- G(a.,O) 

K2Zial- ~ ZiG(ati'rii)2 2zr -~2-rii - 3 
/3 • a i i  a o  

i ¢ i  

4nKdZta i 
+ ~ s 2 exp { -  rca~s 2} cos 27zri . S 

/3 s 

K ~ OoyG(av rri) 
F 

KZ--Ziv G(au'O)[1+2 s~ exp {-rra~sZ/2} cos 2rrr, .  s]  

K a 
Y~ Z i C(atj, rill 

/3 1 

Kd_ [1 + 2  ~ exp { -  na2s 2} cos 2~r, . s]  
13 s a 

between eight adjacent grid points. In the Table, the 
figures for the corner are given to the left of those for 
the centre. The close agreement between the corrected 

sum and the analytic integral in each case verifies the 
procedure and the figures for the correction illustrate 
the severity of the problem in low definition maps. 
The corresponding corrections for K and for Z~ are 
less severe than those for at. Typically, more than 90% 
of the time taken to evaluate an element of I7)WWe is 
spent evaluating the grid sum, arid less than 10% is 
spent on the j summation and Fourier corrections 
combined. 

Computation of the vector element for d is quite 
seriously complicated by the effects of overlap. In the 
expression given in Table 2 for this element, Y Qor 

r 
should be the sum of the observed densities attribut- 
able to atoms in the molten zone, ~Z~ should relate to 
the same atoms and N must be the number of grid 
points involved in forming the grid sum. Here, as for 
all other grid sums, we proceed from atom to atom and 
for each atom access every grid point which falls 
within a parallelepiped just large enough to contain 
a sphere of radius cat where c is a chosen constant, 
1 < c<2.  This means that many grid points will be 
accessed several times, so that, in determining N, it is 
necessary to increment the count of grid points only 
the first time each grid point is accessed. For this 
reason the electron densities are stored as even 
integers and the least significant bit of each is used as a 
flag which is set to 1 the first time the grid point is 
accessed, and the count, N, is not increment on finding 
such a flag already set. This ensures that N corresponds 
to the volume occupied by the molten zone atoms, but 
~Qo~ includes contributions from margin atoms which 
r 
spill over into the volume of the molten zone and it is 
therefore necessary to subtract from ~Oor an estimate 

F 

of these contributions. This is done by considering 
each margin atom and accessing each grid point 
embraced by each such atom and at these grid points 
subtracting KZ~ G(a~, r~) from ~Qo~ only if the flag is 

r 
found to be set to 1. At the end of each cycle of refine- 
ment the flags are cleared. 

The calculation is organized so that atoms are taken 
in the order in which they are listed, beginning at the 
end which has most recently entered the zone. If, in 

Table 3. Examples of  the application of  Fourier corrections to the element for  at 

a (A) 
a[l 
4zm3 

3v 

Grid sum 
Calculated correction 
Corrected sum 
Analytic integral 
Residual, e 
Diagonal element, m, 

of normal matrix 
elm 

Corner  Centre  Corner  Centre  Corner  ~ n t r e  
0.4 0.8 1.2 
1.2 2"4 3.6 

7"2 57.8 195 

- 1760.6 ,1, 51.25 - 35"129 - 34"773 - 6"9048 -- 6"9110 
,1,1208.0 - 6 1 8 - 0  ,1,0.174 - 0 - 1 7 4  - t -8×10 -6 - 8 × 1 0  -6 

- 552.6 - 566.75 - 34.955 - 34.947 - 6.9048 - 6-9110 
-559 .33  - 34.958 - 6 . 9 0 5 4  

+6-73 - 7 . 4 2  + 3 x  10-3 - 1 1  x 10-3 + 6 x 1 0  -4 - 5 6 x 1 0  -4 

35OO 109 14.4 
- t-2×10-3 - 2 x  10-3 + 3 x  10-5 - 1  x 10-4 + 4 x  10-5 - 4 x  10-4 
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proceeding along the list, the storage space allocated 
to the normal matrix is filled, then all subsequent atoms 
are treated as margin atoms overridingly. 

The parametric weights, U, for this refinement are 
set on a somewhat arbitrary basis, as follows. The 
normal matrix I)~YCWD is first calculated. U is then 
taken to be diagonal and such that E E =  
U-q)~TCWDU-~ has unity in each diagonal position. 
i~E is then the correlation matrix and its mean eigen- 
value is unity. This means that filtering based on its 
eigenvalues may readily include the more beneficial 
combinations of Z~ and a~, which tend to be pair-wise 
correlated, whilst excluding those combinations which 
suffer from their high correlation simply by setting 
2, ,~= 1, thereby passing only the top half of the eigen- 
value spectrum. 

7. Translational refinement 

This refinement determines the vector, s, of wanted 
translations as discussed in § 5 using equation (23) 
transformed according to (14). For this purpose both 
V and W are identity matrices so that the grid point 
densities are again given equal weight and filtering 
conserves the sum of the squares of the wanted trans- 
lations for real atoms, whatever their Z values. (A 
different V is used in § 8). 

All internal working is done in Cartesian coordinates 
in /~.  There is then only one type of normal matrix 
element given by 

I 2~K2ZI Zj G(a~j, rtl ) 1 OQ,n g~m dv = 
mtPiq= v gxip gxjq va2ij 

[ xm'xiJq ] . (35) x tJ , .  -2re  a21 j 

Note that if p ~ q the self-terms for i= j  vanish. Inter- 
action elements between different atoms, i # j ,  generally 
exist if p = q, but if p ¢ q they are only important if the 
product 2rcxm, xij~/a~j becomes large before G(atj,rtj ) has 
become small. The partial correlation coefficient 

mtpJq _ [2ata]] 5122nXtDXtJq 
c'pJa- ~/rn,l,,~,m,,j q \--a2~i / a 2j 

x exp { -  zcr~/a b } (36) 

has maximum modulus 1/e which occurs when at =a j  
and rij is along any of the (110) directions and of 
length a t]/2/zc. In this case both correlations between 
atoms i and j involving the third axis vanish. Since the 
correlations between different coordinates of different 
atoms are limited and usually much less than the maxi- 
mum, they have been ignored in order to obtain a 
ninefold saving of storage space. Ignoring elements 
with p ~ q enables us to do three successive refinements 
for the three p values.* 

* Techniques developed recently by Dr  J. K. Reid of  A.E. 
R.E. Harwell for diagonalizing band matrices offer the pos- 
sibility of alleviating this situation. 

The elements of the column vector Da~YCW e are then, 
for coordinate p of atom i, 

2rc K Z  l 
~r x~lPQ°yG(ai' rut) a 2 

+ 2rcKZi 
..... ~- .... ~. [KZ, G(a,,. r,,) exp {-zca~ s2/2} 

s 

+ 2d exp {-rca~s2}]sp sin 2z r i . s 

2nK2ZI ~. Z ! x.p G(ati. rti) (37) 
t) j a2j 

The summation over s is over the same halfspace as 
in § 6 and the j summation again includes margin 
atoms. Matrix and vector elements for all three p 
values are assembled simultaneously. 

In this refinement we proceed along the zone in the 
opposite direction from the procedure of § 6, i.e. we 
begin at the end which has been in the machine for the 
longest time. As before, if the normal matrix is filled 
before reaching the end of the zone all subsequent 
atoms are treated as margin atoms. This procedure 
ensures that in these circumstances all atoms which are 
processed for translational or conformational refine- 
ment have previously been processed for weight and 
radius refinement. This is probably beneficial for a 
structure in an advanced stage of refinement but in the 
early stages, when it is possible that some side chains 
may run out of density, it is questionable whether this 
idea has been a good one, as in such a case it would be 
possible for Z~ values to refine down to zero, after 
which no movement will occur, when a movement, if 
performed first, would let the side chain encounter 
some density. Control options exist, however, which 
permit the refinement of K and d without refining 
a o r Z .  

8. Conformational refinement 

In this section we accept the column vector, s, of 
wanted translations given by the methods of the pre- 
vious section and determine the required conforma- 
tional alterations from equation (26) and the diagonal 
of (34). 

Each parameter in the structure is associated with 
a line joining two atoms in the structure, and these 
atoms may be either real or dummy. We call such a 
line a spindle vector. For any atom above a parameter 
in the list (after allowing for chain branching) the three 
elements of the matrix Dz are given by 

gr  
- f ix  r (38) 

gO 

where fi is a unit spindle vector and r is the position 
vector of the atom concerned relative to some point 
on the spindle. A diagonal U matrix may conveniently 
be introduced at this point by setting 

elements o f  D2 U-1  = n × r (39) 
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in which the spindle now has 

[hi =diagonal element of U -1 . (40) 

Any parameter which has its spindle set to zero at this 
stage will then behave as if it is perfectly rigid when 
filtering is employed. The larger [nl is, the more elastic- 
ally soft the parameter becomes, thus enabling filtering 
to provide a means of conserving elastic strain energies. 
Assigning small In[ values to interbond angles and 
larger ones to dihedral angles alters the latter preferen- 
tially. All [nl values are assignable, either implicity or 
explicitly, by the user. 

As already indicated in the introduction, it is neces- 
sary to introduce constraints to prevent margin atoms 
from moving. This is done by means of a subspace 
section, rather than by Lagrange multipliers, as follows. 

First we scan the zone for margin atoms, for each 
of which we determine a triple row of E2 [equations 
(20) and (39)] with V diagonal containing 1 for a margin 
atom (including dummy atoms) and zero for an atom 
in the molten zone. The matrix E2E2 is accumulated 
without holding E2. E2E2 is then diagonalized by an 
orthogonal A to give 

n =/~EEEEA • (41) 

Then, by (13), any eigenvector (column of A) with 
vanishing eigenvalue would produce no decrement in 
weighted residual, aV'Vu, for finite increment in 00U0 
if a refinement were being conducted which sought to 
adjust margin atom coordinates. It follows that eigen- 
vectors with 2 > 0  correspond to combinations of 
rotations which, if applied, disturb the margins, but 
those having 2 = 0 represent combinations of rotations 
which leave the margins unmoved. Clearly, any move- 
ments which are applied to the molten zone must be 
expressible as a linear combination of these latter 
eigenvectors. A may thus be partioned: 

A=(FIP)  (42) 

in which F contains the forbidden eigenvectors having 
2 > 0 and P contains the permitted ones with 2 = 0. 

The methods used for finding A are those of House- 
holder & Bauer (1959), Ortega (1960) and Wilkinson 
(1958, 1960) and these procedures fail to deliver ortho- 
normal eigenvectors for coincident eigenvalues, so 
that F is determinate but P is not. However, the detailed 
nature of P is unimportant provided A is orthogonal. 
Therefore a valid P may be generated using the Gram-  
Schmidt process* against F. 

Solving then for the weighted rotations ~ = U 0  we 
have from (25) 

Vs = E2q~ + Vu (43) 

in which E2 now relates to real atoms in the molten 
zone using the diagonal of (34) for V, and in which we 

* In this procedure a series of arbitrary vectors are orthog- 
onalized with respect to all columns of F and all previously 
found columns of P and normalized. 

may now write 
9 = P v  (44) 

and solve for ~ as unknowns. It is important that the 
same parametric weights, U, be used in (43) as were 
used when P was being established, but we are free to 
vary the weighting scheme, V, as we have done. Then 
(43) becomes 

Vs = EEP~g + Vu (45) 
hence 

P~2VS = P~2EzPql (46) 

which, when diagonalized by an orthogonal B and 
filtered gives 

= BZ(P,P~2E2PB)-ll]P~2Vs (47) 

O= U - 1 p B Z ( B P E z E z P B ) - I B ~ a V s .  (48) 

Here the eigenvalues in BP~aE2PB relate the decre- 
ment in the weighted residual translations fiCCVu to the 
increment in ~g .  But 

0CU0 = t~q0 = ~ P P v  = ~ g  (49) 

thus (48) provides a solution for 0 which is filtered on 
the required basis and constrained to leave the margin 
atoms undisturbed. 

The final atomic positions are then obtained from 

where 

o o  

r =  ~ rm (50) 
0 

__~_1 0 rm = x rm-1 (51) 
m 

in which r o is the initial position of an atom relative to 
an atom on the spindle and r is its final position relative 
to the same point with 

0=0~. (52) 

This procedure moves the atoms along arcs of circles 
and involves non-linear dependence of the final posi- 

o o  

tions on the angles, so that, if ~ r,n is not negligible, 
2 

movement of margin atoms will occur despite the 
precautions taken against this. These second order 
movements of margin atoms may then be removed by a 
corrective refinement against the original coordinates 
of the margin atoms alone. This refinement has a 
normal matrix comparable with that in equation (41) 
and is also filtered so that movements are now confined 
to a revised subspace F; revised because the main 
refinement step changes the conformation of the 
protein on which F depends. This corrective refine- 
ment produces weighted rotations of the form 

U 0 ' = F ' v '  (53) 

(in which the prime denotes this corrective step), so that 

(0 + 0')I~U(0 + 0') = 01]U0 + 2-00U0' + 0'I~U0' (54) 
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in which the second term is 

2~Pr'v' =0 (55) 
which would vanish exactly if the F' were unprimed, 
and the third term is second order. The effect of this 
corrective refinement on fiVVu is also second order, 
but may be of either sign. 

This corrective refinement is optional in the existing 
program and may reasonably be omitted if the expected 
translations are small. In the case of a 2 A_ map in 
which the zone contained five peptides, of which two 
formed the margins (i.e. three peptide links and four 
side chains in the molten zone), omission of the cor- 
rective refinement produced discontinuities in the 
protein chain ,,~ 10 -2 A when the root-mean-square 
(r.m.s.) movements were ~ 0.3/~. Inclusion of the cor- 
rective step produced perfect chain continuity with- 
in the limitations of the word length of the com- 
puter. 

At the beginning and ending of a peptide chain 
atypical circumstances arise. At the beginning, several 
movements of the zone are generally required before 
the free end of the protein chain enters the upper 
margin, and until this happens the tip of the chain is 
free to move. At the chain terminus the situation is 
more complicated because, for the last few movements 
of the zone, the lower margin is missing. The normal 
procedure here is to include a chain terminator which 
introduces three degrees of translational freedom, and 
to precede this with suitable dummy atoms and main 
chain parameters to provide three degrees of rotational 
freedom also. With this arrangement, the chain ter- 
minus may move when the lower margin has run off 
the end of the chain and the constraint procedure 
already described holds the upper margin stationary. 
In this connexion, the parametric weights for the three 
translational parameters need consideration, and here 
the considerations raised by Scheringer (1968) are 
relevant. Scheringer has studied filtering in relation 
to the convergence properties of refinements against 
reciprocal space data, and for this purpose used the 
weighted radius of gyration of the group moved by a 
parameter as the parametric weight (diagonal element 
of U). This arrangement conserves the sum of squares 
of distances moved by the atoms (weighted also ac- 
cording to their Z values) rather than a strain energy 
which is the objective here. However, the three trans- 
lational degrees of freedom at the chain terminus have 
no strain energy associated with them, yet they must 
be weighted in such a way that the filter does not 
exclude them purely because they are of a different 
character from the other conformational variables. As 
an example, consider the refinement of a haem group, 
a disc-like collection of atoms some ten ~ngstr/Sms 
across. If this is treated as an independent chain with 
three degrees of translational freedom and three 
degrees of rotational freedom about its mid-point, and 
if these parameters are given unit weight, then unit 
displacement of the latter produces movements ,.~ 5 A, 

whereas unit displacement of the translational param- 
eters produces movements of only 1 A. In these cir- 
cumstances eigenvalues associated with the transla- 
tions are smaller than those due to rotations and 
filtering criteria chosen as suitable for the protein 
chain may then be unsuitable for the haem group, and 
act to suppress the translations. For this reason as- 
signable parametric weights are provided for the trans- 
lational parameters associated with the chain termi- 
nator. 

9. Residuals 

At the time of writing, the seemingly trivial problem 
of characterizing the residual after refinement is not 
satisfactorily solved. It is clear that we should aim to 
quote R1 [equation (5)] suitably normalized. However, 
the difficulty is that Om contains d, and whilst d is 
recomputed for each zone position there is no uniquely 
defined d value associated with each grid point. Cal- 
culation of the difference Qo- Qm requires the use of a 
flag system as in § 6 and results in a difference map with 
steps in it where the d value changes with movement 
of the zone. Alternatively, one could obtain a residual 
R2, like R1, but minimized with respect to a single d 
value applicable to the refined volume 

N 1 i N  ]2 R2= ~ (0o-0-~)2--~ ~ (Qo-0-~) (56) 

in which O~ is Om with the background term omitted, 
but even this calculation requires flags which must be 
independent of those of § 6, so that R2 cannot be ac- 
cumulated as the refinement proceeds and can only be 
obtained subsequently as an independent operation. 

A difference map 0 o - ~  is available without this 
complication and an index of the smoothness of this 
map would be valuable. Evidently 

R 1 = I(Qo- Q~ - d) 2 
1 

dv --ff ~ IFo-F-~-Val 2 (57) 

where F~ is the transform of Qm and F a is the transform 
of the slowly varying background and is only appreci- 
able near the origin of reciprocal space. A plot of 
(IFo_F~ ]2) against 2 sin 0/2 then gives an indication 
of R1 in the region where Fa is negligible, but such a 
plot would contain contributions from partially or- 
dered solvent or from any parts of the molecule which 
have not been refined, and this would have to be al- 
lowed for. It is intended to investigate these residuals 
in both real and reciprocal space. 

10. Examples 

In this section we give one or two examples of a pre- 
liminary nature. More detailed accounts of actual 
refinements must await papers on the proteins con- 
cerned. 

Fig. 1 illustrates the largest definitely significant 
movement which the program has produced. The 
example is the 12A tryptophan in myoglobin. The 

A C 27A - 4 
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Figure shows a near-central x section through the side 
chain in a map at 2 A resolution. (The reflexions used 
in calculating this map were only those which could be 
phased by the multiple isomorphous replacement 
method.) The movement which has occurred consists 
primarily of a change in Z 1 from - 180 ° to - 154 ° [Z 1 
is the dihedral angle in the Cot-Cfl bond, see Edsall, 
Flory, Kendrew, Liquori, Nemethy, Ramachandran & 
Scheraga (1966 a,b,c)] and it involves a movement of 
1.6 A at the end of the side chain. This occurred in 
two passes, 1-1 A on the first pass and 0.5 A on the 
second, the zone length being such that each pass 
involved four refinements of the side chain position. 
Convergent shifts as large as 4 It have been produced 
that are mathematically plausible, but these have oc- 
curred in very ill-defined regions of the map where one 
can have little confidence in this or any other inter- 
pretation. They serve only to show the distances that 
can be traversed by this technique in order to reach 
higher density. 

The stability of the process is also good. For the 
first 19 residues of myoglobin, including the first two 
which are ill-resolved, a first pass produced an r.m.s. 
movement of 0.521 It  taken over all real atoms, and 
0.226 It taken over main chain atoms only. On a 
secondpass the corresponding figures were 0.203 and 
0-118 A. These figures were obtained with refinement 
of K and d active, but without refining Z l or a, values, 
and with the corrective refinement (non-linear con- 
straints) included. Translational and conformational 
refinements were both filtered to pass two decades of 
the eigenvalue spectra. Under these conditions a zone 
having four side chains and five peptide links (two of 
them margins) moves once every 1-} minutes on an 
IBM 360/44 computer, i.e. a mean rate of 1.5 min per 
residue, each residue undergoing 4 cycles. 

I should like to acknowledge the use of a subroutine 
for diagonafizing matrices written by D. W. Matula 
and obtained through the IBM Share library, and I am 
indebted to Drs J. C. Kendrew and H. C. Watson for 
the use of the myoglobin data. 

Let ~=~0 when z is the solution, z0, of (A4), then, at 
some position z in z space near z0, we may write 

and from (A2) 

~=~o+6~ Z=Zo+fZ (A5) 

~ =  - E 6 z .  (A6) 

Thus the residual associated with the point z is 

= ((o + (to + 

= ~o~0- 6 i ~ o -  ~oE6z + 6Z~E6z (A7) 

in which the second and third terms vanish by (A3). 
Hence, in z space 

~ - ~0{o = 6Z~F_a$z = const. (A8) 

is a surface of constant residual. 
Let EE be diagonalized by an orthogonal A 

and with 

(A8) becomes 

* ~ E A = A  (A9) 

z=AIt  (A10) 

~ - ~0~ -- ~il~A61a. ( A  11) 

Here the elements of ~ila are components of 8z in the 
directions of the eigenvectors of ~E. 

For a linear problem (i.e. equation (A2) exact for 
any magnitude of z) these equations hold for large 6z, 
in particular, they hold when the point z comes to the 
origin 

z = 0, 8z  = - Zo, 6p  = - It ( A  12) 

in which case ~-~ogo becomes the decrement in the 
residual during a cycle of refinement, and the elements 
of Po are the eigenshifts. 

Evidently the contribution of the ith eigenshift to 
the decrement in the residual is 2i#02i, by (A11). Like- 
wise its contribution to the increment in 

:~I]Ux = Zz = gAAl~ = l~lt (A 13) 

is/z2v Equation (13) follows immediately. 

A P P E N D I X  A 

Der ivat ion  o f  equat ion  13 

Setting 

t~ = W y ,  ~ = W e ,  z = U x  ( A  1) 

transforms (10) to 

o = E z + ~ .  (A2) 

The residual gz~'We = (~ is minimized when ~ is orthog- 
onal to every column of E, i.e. when 

i ~ = 0 .  (An) 

Premultiplying (A2) by ~, using (A3), gives the normal 
equations 

i~o = ~Ez .  (A4) 

APPENDIX B 

Def in i t ions  and ident i f ies  

We define a one-dimensional Gaussian as 

1 g(a, x)= a e X p  {-nx2/a 2} (B1) 

then the spherical Gaussian 

and 

1 3 
G(a, r )=  ~ exp { -  ro'2/a2} = IIg(a, x~) (B2) 

p-----1 

(a, r)dv= (a, x)dx= 1 . (B3) 
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Fig. 1. A section at x = 28/96 of  an electron density map  of sperm whale myoglobin at 2 A resolution. The section is a nearly central  
section th rough  t ryp tophan  12A and shows the movement  of  the side chain f rom its originaljaosit ion (unspotted) to a refined 
position (spotted) after two passes of  the program.  On a third pass a fur ther  movemen t  of  0.1 A i n  the same direction occurred. 
All a~ values were fixed at 1-2/~. Section x = 29 shows substantially more  density for a toms C 61 and N ~1. The diagram was 
produced by the me thod  of  Gossling (1967). All con tour  spacings are equal, negative contours  dotted.  

[To face p. 448 
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We have then that 

I2n= g(a, x)dx= ~ k 4n ! 
_ x2 n (2n)! [a2]  n (B4) 

l °°o x2n+ X I2n+l= _ g(a, x)dx=0.  (B5) 

(B4) may be obtained by successive integration by 
parts involving a recurrence relation between/2, and 
2n-2" 

Using the notation 

Xok = x -  x k, xli= x l -  xj etc. and au= ~ + a~ 

it is easy to show that 

( ataj Xok)g(au, x , )  (B6) g(at, Xot ) g(aj, x0j)=g \ - -~u  ' 

in which 
at z xj + a~ x t (B7) 

X k -- a21 

so that 
Xkt=Xk--Xl=a} xn/ai~ } (B8) 
Xkl=Xk--xl=a} x,/a},. 

Then many of the required integrals are of the form 

In. m = _~ox~t x~ g(a i, Xoi) g(a 1, Xoj)dx. (B9) 

Replacing Xoi by X0k + Xk~, using (B6) and the binomial 
theorem gives 

~ m n! m! X~k7 ~x'ff; -t 
In'm=g(au'xo) ~ s ! (n-s) ! t l ( rn- t ) !  

s=O t=O 

r°° "s+t ° ( atal ) x }_oo..ok ~s , X0k dx (B 10) 
\ a~t 

which, by (B4), (B5) and (B8) is 

In,m=g(ati,Xtl) ~ 
s = 0  t = o  
s + t even 

( -  1)"-*n! m! (s + t)! a~ "-~+' a~ m+s-t  

s! (n-s) !  t! (m- t ) !  [(s+t)/2]! (47C)(s+t)/2a~+2m-s-t 

x x7 +'n-*-` . (Bll) 

In particular 
Io,o=g(atj, xu) 

4 
I1,0 = -g(atj, xtj) a--~, xtj 

[alx,~, l ( a , a ,  t2 ] 
I2.o=g(au, x,j) [--~l, + 2-~ \-~-t, ! 

(aia----Ll2[1-2n~] Ix,t = g(au,x ~j) ~ \ au ! 

(B12) 

(B13) 

(B14) 

(B15) 

[(aial]4x~tJ + _ _  
12,2 = g(a o, x,j) t \ at, I a41 

1 a 4 -  2 2 4 4a t aj + aj 
2n aEj 

( a,al ~2 xiZ__~_j 3 (aia___Li 4] (B16) 
x \ - ~ , /  a2j +-4---~\a, , /  " 

We shall also need 

and 

I_°°oo (2n 4 -1)g(at,xot)g(a,,xo,)dx (B17) 
\ a t  

_ 2S I2o-Ioo a2  , . 

4 a5 

i oo (2n_~=t _ 1) (2n X3_L _ 
-oo \ at a~ 

1) g(at,xa. ) g(aj,xaj)dx 

(B19) 

_ 2n 2re 
4/g2 /2  2 -~-2- I o , 2 -  - -  12 0 + Io o (B20) 

- -  ~ , - -  a 2  , , 

a t aj . . j  

which similarly leads to 

2 2  [~ l12nx21]a~ j  at al _ _ g(aij, x , )  4n2~[  1 +3 ° (B21) 
a41 

Some Fourier transforms will also be required. By 
expanding the complex exponential as a power series, 
and using (B4) and (B5) it is easy to show that 

I ~_ g(a,x) {2nixs}dx- T[g(a, x)] e x p  

=a-lg(a-X,s) (B22) 

I ~ xg(a,x) {2nixs}dx = T[xg(a,x)] e x p  

= ias g(a -1, s). (B23) 

Transforms involving higher powers of x may be 
obtained by noting that (B9) is a convolution, and 
hence 

T[Im.n(Xu)]= T*[x~ g(ai, xot)]T[xgj g(aj, x0j)] (B24) 

so that, for example 

T [Ii.x(Xll)]=s 2 a~a~ g(a~il, s) (B25) 
ail 

by (B6) and (B23), so that 

by (B15), and conversely 

a (l_2na2s2)g(a_l,s)" (B27) T [x2g(a, x)]= ~ -  

A C 27A - 4* 
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Transforms of the form T[x m+n g(a,x)] may similarly 
be obtained in terms of those for x m, x" and lower 
powers. 

APPENDIX C 

Derivat ions  o f  normal  matr ix  e lements  in Table  1 

We require first 3Qm/Op for p = K, d, at or Z z at a general 
vector position r and write r0 t= r - r , .  All volume 
integrations are then over r. Then from equation (1) 

OK - ~, Z ,G(a , ,  rot) (C1) 
1 

~Qm 
ad - 1 (C2) 

30m - KZ'  G(a,, roi) (2n r~l - 3) (C3) 
c~a~ a i a~ 

OQm 3Z~ - K a ( a , ,  ro, ) . (C4) 

(i) The K, K element is then, from (C1), 

Z zt zj G(a,,ro,)G(a, ,ro,)dv (C5) 

which, when expanded by (B2) and (B 12). gives 

_1 ~. ~ Z, Z, G(au, ru). (C6) 
/) "7 -Y 

(ii) The d, K element from (C1) and (C2) is 
1 lv ~. Zt f G(at, rm)dv= v ~. Z, (C7) 

by (B3). 
(iii) The d, d element, by (C2), is 

V 
--N (C8) v 

in which V is the volume over which the integration 
is taken and N is the number of grid points in this 
volume. 
(iv) The a i, K element, by (C1) and (C3), is 

1 KZ, IG(a,, rot)(2n r~/__ 3)~ Z,G(a,,roj)dv. (C9) 
v a z a~ i 

Using (B2), gives 

KZ, ~Z, I f l  ~" (2nx~'¢-l) 
vat ~ ~, = 1 aZ~ 

3 

x H g(a~,xoia)g(aj,xoi~)dxldx2dx3 

which, with (B12) and (B18), gives 

Z' (2n r~' - 3) G(a,,, r,,) (CIO) 
KZ, a~ • a-}; a~u-. 

(v) The ai, d element, by (C2) and (C3), is 

1 I O~m ; -gg dv 

which must vanish because SQmdv is independent of 
ai by (B3). Integration of (C3) using (B2) and (B4) 
confirms this. 
(vi) The at, aj element, by (C3), is 

K 2 Z t Z I I [ 2 n  r g i - 3 ) ( 2 n  rgL-3)  G(az,roz)G(al,ro~)dv 
\ a~ a] a i a I v 

Using (B2) gives 

K 2 Z i Z  1 x 2 3 3 / 7~ O 0  

= t 2 - 4  
3 

x H g(a~,xots) g(aj,xojs)dxadx,dx 3 
s ~ a  

which, with (B18) and (B21), becomes 

x 2n x_#q _ II + N "n"j 4n 2 xtJP - 12n xup 
a5 /.., .... 4- -~j- --  - + 3 ] p=l ail a~s 

K2ZzZiazaj [4nZ _aff au a41 v G(aij,rti) r~ rZ 5] - - . . . . . .  20n-~- + 1 . 

The remaining three elements in Table 1 have deriva- 
tions closely modelled on those already given. 

A P P E N D I X  D 

Der ivat ions  o f  the vector e lements  of  Table  2 

The expression to be evaluated for any parameter, p, is 

3Qm 1 [ 3_0m Qm] exp {--2nit s} 

1 ~ O•m 
-- V- ~ ~p ~m d/.) (D 1) 

in which T denotes Fourier transformation evaluated 
at those points in reciprocal space which form the 
lattice which is reciprocal to the grid on which the 
electron density is given, and 0~, is that part of Qm 
which depends on the parameter p, as described in § 3. 
The first term in this expression may be obtained 
directly from (C1-C4) without further discussion. 
(i) For the K element the third term is 

v ~ Zl G(a,, ro,)[K ~ Z,  G(a,, ro,)+d]dv (D2) 

in which the summation over i excludes the margins 
and the summation over j includes them. (D2) is 
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K d 
v ~ ~ Z t Z l G ( a u ' r n ) - v ~ Z '  (D3) 

by (B2) and (B12). 
To obtain the second term of (D1) we require, in 

principle, the transform of the integrand in (D2). As 
explained in the text, we approximate by replacing ~m 
by 0~, and ignore the effects of overlap for the purpose 
of estimating this correction. The correction is only 
large if the atoms are sharp peaks relative to the grid, 
and in these circumstances the overlap contributions 
for i¢ j  are likely to be small. Thus we require the 
Fourier transform of 

K ~ Z 2 G2(a,, rot ) + d ~ Zl G(a l, rol ) . (D4) 
1 t 

Now (B2) and (B6) give 

a2(a,, ro~)=a(a,, O) a(at/~/2, rot ) (D5) 
and 

T[G(ai, rot)]=ai -3 G(a; l, s) (D6) 

relative to atom i as origin, so that the transform of 
(D4) is 

K~Z~G(a" 'o)(a-~)-3G(l /2/a i  ,s 
+d ~ Z~aF3G(a; 1, s) 

i 

which is 

K ~ Z~ G(a.. 0) exp {-~ta~s2/2} 
1 

+ d ~ Z, exp { -  rca~s 2} (D7) 
l 

and the tabulated result follows. 
(ii) The term for d is trivial to derive, but it is worth 
pointing out why it includes no Fourier correction 
term. This is because 80m/Odis unity, hence the correction 
depends on T(Qm), or, better still, 7"(0o) which is that 
part of Fo attributable to the molten zone. Since its 
value is only required at points which are reciprocal 
to the electron density grid and since it is standard 
practice to subdivide the unit cell into at least three 
times the highest index used in computing 0o it follows 
that the reciprocal-lattice points required for the cor- 
rection are at least three times further out than the 
furthest Fo value used and the correction is therefore 
zero within the given context. 
(iii) For the at element the third term in (D1) is 

-1  I KZ' (2~z rE'--3)G(a~, ro, ) 
v ~ a-~ 

×[K ~ ZjG(aj, roj)+d]dv . (D8) 
J 

The part involving the j summation gives 

Z, (2z~ r~, _ 3)G(an,rn) (D9) 
-K2Zlai a~ 

by comparison with (C9) and (C10), and the part 
involving d vanishes [see Appendix C § (v)]. 

For the Fourier correction we require the transform 
of the integrand in (D8) wi th j= i ,  i.e. of 

K2Z2 (2re r ~ ( - 3 )  G2(a~,ro~) 
a i a~ 

+KZld  (2n-rEi-3) G(a,,ro,) (D10) 
a i a 2 

3 
Replacing (2re 2 2 ro,/a i - 3 )by  ~ (2re 2 2 xoJa l - 1) and using 
(B2) and (B26) gives p=l 

2rcKZ~ds z 
a~ G(a71,s) (D 11) 

for the second term in (D10), whilst the first term may 
be similarly treated on replacing (2re 2 z r~ffa t - 3)G~(ai,rl) 
by 

1G(2b, O)[(2rcr2~ -3)  -3]  G(b ,  b=affl/2 -b 2- rol) 

leading to the tabulated correction. 
(iv) The derivations for Z l closely follow those for K. 

APPENDIX E 

Derivations for translational refinement 

(i) Normal matrix elements. 
The derivative with respect to the pth coordinate of 

atom i is 

_ ~ m  __ 2gKZI Xotp G(at 'rot ) (El) 
Ox,  

and is positive for Xop > xip because Qm at a grid point 
rises if the atom moves towards it, having opposite 
sign to the gradient of 0m at such a point. The required 
matrix element is then 

4~2K2ZtZJ I - 
a~a~v Xol~XojeG(at,ro~) G(aj,ro~)dv . (E2) 

I f p = q ,  (B2), (B3), (B6) and (B15) give 

2zcKZZ, Zj (1 - 2re x5 • a~jv ~ff, j ]  G(awru) (E3) 

whereas if p ~ q, (B2), (B3), (B6) and (B13) give 

4rc2K2ZtZj 
aial v22 _ a~, ) (  a~ ) G(a''ru) (E4) 

which, with (E3), simplifies to (35). 
(ii) The element of the column vector I)1~¢¢W~ for x~p 
is given by 

8Q m 1 [ ¢~Qm 0m]eXp {_2nir  S} 

1 I 80m 
V ~ ~)m d/). (E5)  
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The first term immediately gives 

2nKZ i 
~r xrlP°'°rG(al'rrt) (E6) a 2 

whilst the third is 

1 ~ 2nKZ i 
xo,pG(ai,rot) 

13 ~ a 2 " 

× [ ~  KZiG(ai,roi)+d ] dv (E7) 

in which the term involving d vanishes and the other 
part  gives 

2nK2Zt 
v ~ ZI xtl----~p a~j G(a~j'rtJ) (E8) 

by (B2) and (B13). 
The Fourier  correction is the t ransform of 

2nKZtxotp 
-22 G(a~,rot)[KZiG(a,rot) + d] (E9) 
at 

in which the first part  is 

2nK--aZ? T[xo,p G2(a,,ro,)] (El0)  

which is 

2nK2Z 2 
G(au,O) isp -f-2 G(V2/a,,s ) ( E l l )  a 2 a t 

by (B2), (B6), B(22) and (B23), so that  the required 
transform is 

gKZZ 2 G(a,, O) 

x ~ isp exp { - h a  2 s2/2} exp { - 2 n i r , .  s} (El2) 
whole space 

= 2nK2Z 2 G(au, O) 

x ~ sp exp {-na2s2/2} sin 2nr t . s (El3) 
I/2 s p a c e  

which enters (E5) with a sign reversal, to give (37), 
because (8) involves F(r0t), not  F(rl0 ). The second part  
of  (E9) similarly gives 

4nKdZ t ~ sp exp { -  na~ s z} sin 2nr i . s .  (El4)  
1/2 s p a c e  
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Accelerated Convergence of Crystal-Lattice Potential Sums* 

BY DONALD E. WILLIAMS 
Department of  Chemistry, University of Louisville, Louisville, Kentucky, U.S.A. 

(Received 28 September 1970) 

A method for increasing the rate of convergence of general crystal lattice sums of the type Y. q~qer~ n 
j¢k 

is described. The method is applicable for n > 3, or for n > 0 if Y qj = 0. A numerical example is given 
cell 

for the London dispersion energy (n = 6) of the benzene crystal. The calculation effort required to obtain 
the lattice sum was reduced at least tenfold. 

Introduction 

We consider here crystal lattice pairwise sums of  the 

* A preliminary account of this work was presented at the 
Eighth International Congress of Crystallography at Stony 
Brook, N.Y., August 1969. 

type 
Sn= ½ ~ q~qk"ik", 

j ~ k  

for a general composite lattice. The subscript j runs 
over one unit cell, while the subscript k runs over the 
entire lattice, excepting j = k .  The constants q~ are as- 


